MLX
This notebook shows how to get started using MLX
LLM's as chat models.
In particular, we will:
- Utilize the MLXPipeline,
- Utilize the
ChatMLX
class to enable any of these LLMs to interface with LangChain's Chat Messages abstraction. - Demonstrate how to use an open-source LLM to power an
ChatAgent
pipeline
%pip install --upgrade --quiet mlx-lm transformers huggingface_hub
1. Instantiate an LLM
There are three LLM options to choose from.
from langchain_community.llms.mlx_pipeline import MLXPipeline
llm = MLXPipeline.from_model_id(
"mlx-community/quantized-gemma-2b-it",
pipeline_kwargs={"max_tokens": 10, "temp": 0.1},
)
API Reference:MLXPipeline
2. Instantiate the ChatMLX
to apply chat templates
Instantiate the chat model and some messages to pass.
from langchain_community.chat_models.mlx import ChatMLX
from langchain_core.messages import HumanMessage
messages = [
HumanMessage(
content="What happens when an unstoppable force meets an immovable object?"
),
]
chat_model = ChatMLX(llm=llm)
API Reference:ChatMLX | HumanMessage
Inspect how the chat messages are formatted for the LLM call.
chat_model._to_chat_prompt(messages)
Call the model.
res = chat_model.invoke(messages)
print(res.content)
3. Take it for a spin as an agent!
Here we'll test out gemma-2b-it
as a zero-shot ReAct
Agent. The example below is taken from here.
Note: To run this section, you'll need to have a SerpAPI Token saved as an environment variable:
SERPAPI_API_KEY
from langchain import hub
from langchain.agents import AgentExecutor, load_tools
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import (
ReActJsonSingleInputOutputParser,
)
from langchain.tools.render import render_text_description
from langchain_community.utilities import SerpAPIWrapper
API Reference:format_log_to_str | ReActJsonSingleInputOutputParser | render_text_description | SerpAPIWrapper
Configure the agent with a react-json
style prompt and access to a search engine and calculator.
# setup tools
tools = load_tools(["serpapi", "llm-math"], llm=llm)
# setup ReAct style prompt
prompt = hub.pull("hwchase17/react-json")
prompt = prompt.partial(
tools=render_text_description(tools),
tool_names=", ".join([t.name for t in tools]),
)
# define the agent
chat_model_with_stop = chat_model.bind(stop=["\nObservation"])
agent = (
{
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]),
}
| prompt
| chat_model_with_stop
| ReActJsonSingleInputOutputParser()
)
# instantiate AgentExecutor
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke(
{
"input": "Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?"
}
)
Related
- Chat model conceptual guide
- Chat model how-to guides